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ABSTRACT 

There is a computer program available for use on Cyber 

which allows one to determine the critical speeds, normal 

mode shapes and forced vibration response of any piece of 

rotating machinery. 1 The program is based on the Holzer- 

Mykelstad-Prohl Method modified to apply to lateral vibrating 

systems. This program cannot be applied to torsional systems. 

*Operated by Universities Research Association, Inc., 
under contract with the U. S. Department of Energy. 
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DEVELOPMENT OF COMPUTATIONAL METHOD 

The computational method is based on the Holzer-Mykelstad- 

Prohl (HMP) Method which is discussed in detail in reference 2. 

The following discussion is purposely brief and intended only to 

give the reader some idea of what the computer program is doing. 

The HMP Method treats any rotor system as being made up of 

stations. A station is defined as a section of shaft of finite 

length whose outside and inside diameter remains constant and 

which has other "parameters" lumped at the right end. 

A section of shaft with a large flywheel at the right end 

would be represented by the following station. 

P I,M 

where I = inertia of disk 

M = mass of disk 

A section of shaft supported in bearings at the right end 

would be represented by the following station: 

where K = restoring force 
of bearing 

A section of shaft supported in bearings at both ends must be 
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represented by two stations: 

where Kl = restoring force of left bearing 

K2 = restoring force of right bearing 

Notice that the left bearing is represented by a station whose 

length is very small, even though there really is no shaft to the 

left of the bearing. This is essential for the program to work: 

a station must have finite length and diameter. 

A section of shaft supported in bearings at each end with a 

flywheel in the middle would be represented by the following 

stations: 

4 + 
I,M 

-I- 

Angular spring forces can also be included. Angular spring 

forces arise from devices like rubber couplings which resist relative 

rotations between shaft sections: 
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\ - RUBBER IN COUPLING 

The rubber shown in the above coupling will try to straighten 

out the shaft. Angular restoring forces are usually given by manu- 

facturers in units of pounds per radian. 

The HMP Method develops a transfer matrix across a station 

which relates parameters at the right end of the station to the left 

end of the station: 

u= Lateral deflection 

0 = Angular rotation 

M = Bending moment 

V = Shear force 

w = Natural frequency of system 
3 

f(wA) = The elements of the matrix are functions of w2 

U 
0 
M 
V 

Right 

Where: 

Boundary conditions for a free shaft require that the bending moment 

and shear force be zero at each (free) end of the shaft. By selecting 
2 a unit deflection at the left end of shaft and guessing w , the trans- 

fer matrix allows one to progress across to the right end of the shaft 

and see whether the shear force and bending moment really do come out 
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to be zero. If they do the problem is solved (i.e., w2 has been 

found); if they do not, guess a new wL and try again. The program 

performs the iteration of w2. A progressive sequence of guesses for 

cd2 will give rise to the following sort of plot: 

A ,/-- FIRST CRITICAL 

THIRD CRITICAL 

W2 

- SECOND CRITICAL 

In the above plot, A is the value of a determinant which shall 

be left undefined for this discussion. Every place the curve crosses 

the w2 axis, a natural frequency occurs. It is appropriate to mention 

two problems which may occur with this program. The following plot 

illustrates the problem: 

,----- FIRST CRITICAL 
i' 
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Notice that the second and third criticals were missed entirely 

simply because small accumulated errors in the program did not allow 

the curve to cross the w2 axis. The program has been written in 

double precision to help avoid this problem. The other problem 
2 occurs when too large an increment is chosen for w ; in this case 

the graph goes above the w2 axis and drops down again between two 
2 consecutive values for w . When this happens there is no change of 

sign for the program to detect and the criticals are missed. 

One last point concerns gyroscopic effects. A spinning disk 

(particularly a large one) has an angular momentum vector which 

resists a torque in any direction. During lateral vibration, if such 

a torque is exerted on the disk, the disk will resist that torque 

and so tend to "stiffen“ the shaft. This tends to raise the natural 

frequency of the system. The program will find both the static nat- 

ural frequency and the dynamic natural frequency which includes gyro- 

scopic effects. Gyroscopic effects are accounted for by substituting 

-1 for I in the input data. It is difficult to see exactly why this 

works but the following may help. The effective inertia of a disk 

shows up as w(w-252)I where Q is the precessional frequency. In the 

static case there is no precession and fi = 0 leaving w 2I for an ef- 

fective inertia. In forward synchronous whirl, R = w and the effec- 

tive inertia becomes 0'1 - 2w21 = -w21. This gives some indication 

of why substituting a minus I works. Note that it only accounts for 

forward synchronous whirl. 

USE OF PROGRAM W ITH EXAMPLE 

The input will consist of a description of the shaft and the 

forcing function. The output will consist of natural frequencies, 
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normal mode shapes and forced vibration response. THE PROGRAM NAME 

IS LATVIB. Persons interested in using this program should contact 

the author for a copy of the deck. 

LATVIB requires a line printer for output due to the width of 

the output. To execute the program, the deck should consist of the 

following cards: 

JOB NAME. 

USER (NUMBER, PASSWORD) 

CHARGE CODE. 

ATTACH, FTN, FORTRAN, POST PRC/UN = NEW LIBR. 

GET (LATVIB = LATVIB) 

FTN, I + LATVIB, OPT = 1. 

LGO. 

7-8-9 CARD 

DATA 

6-7-8-9 CARD 

The input has the following format: 

CARD COLUMNS 

1 1-3 Number of problems (FORMAT 13) 

2 l-4 Shaft identification number (FORMAT 14) 

5-6 4 (this specifies run application) (FORMAT 12) 

3 l-3 Number of shaft sections (FORMAT 13) 

4-6 Number of frequencies desired (FORMAT 13) 

7-16 Required accuracy of frequencies in rad/sec (FORMAT F1O.O) 

17-26 Approximation to first natural frequency (FORMAT F10.0) 
in radlsec 

27-36 Frequency increment in rad/sec (FORMAT F1O.O) 
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CARD COLUMNS 

Cards 4, 5, . . . ) (NS + 3) all have the same 

format (NS is the number of shaft sections). 

Each card describes one shaft section. The 

cards must be arranged in the same order as 

the shaft sections: Card 4 describes 

section 1, Card 5 describes section 2, etc.) 

4, 5, . . . , l-8 
(NS + 3) 

9-16 

17-24 

25-32 

33-40 

41-48 

49-56 

Section length in inches 

Section outer diameter in inches 

Section inner diameter in inches 

Section weight density in lb/in3 

Section modulus of elasticity in psi 

Section lumped mass in lb sec'/in 

Section lumped diametral inertia in 
lb sec2 inches 

(FORMAT F8.0) 

(FORMAT F8.0) 

(FORMAT F8.0) 

(FORMAT F8.0) 

(FORMAT F8.0) 

(FORMAT F8.0) 

(FORMAT F8.0) 

57-64 Section linear spring force in lb/in (FORMAT F8.0) 

65-72 Section angular spring force in in lb/rad(FORMAT F8.0) 

. 

The next cards specify the forcing function at each section. 

Note that if there is no forcing function at a station, a blank card 

must be inserted. 

NS+4, 
NS+5, . ..) l-10 Force input at section (FORMAT F1O.O) 

2NS+3 11-20 Frequency of force input at section (FORMAT F1O.O) 

21-30 Moment input at section (FORMAT F10.0) 

31-40 Frequency of moment input at section (FORMAT F1O.O) 

The remaining cards specify a quantity called the modal damping 

factor. This factor is important only in systems where damping has a 

significant effect on the forced response of the system. In general, 
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the factor will have little effect and values of 0.1-1.0 should be 

used. There will be one damping factor for each of the frequencies 

desired (NF). Blank cards must be inserted if no factor is used. 

2NS+3, l-10 Model damping factor (FORMAT F1O.O) 
2NS+4 . . . , 
2NS+3+NF 

The following example illustrates the use of the program. The 

example is a three rotor, two bearing shaft consisting of five stations. 

The critical speeds will be found for the static case (no gyroscopic 

effects) and the dynamic case (gyroscopic effects included). The 

driving force used is 1 lb. at 5000 RPM located at Station 2. 



GIVEN 

-lO- 

= lo7 lb/in 

= lo7 lb/in 

= . 02303 lb s2/in 

= . 06910 lb s'/in 

= . 05757 lb s'/in 

= J3 = J5 = ,581 lb s2 in 
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The attached copy of the program lists the required input and 

the corresponding output for the example. Note that in the static 

case the first natural frequency occurs at 936 radians per second 

whereas in the dynamic case the first natural frequency occurs at 

1025 radians per second. This difference, due to gyroscopic effects, 

can become quite large for heavy flywheels which are overhung a 

sizable distance. 
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